Metamath Proof Explorer


Theorem subcss2

Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcss1.1 φJSubcatC
subcss1.2 φJFnS×S
subcss2.h H=HomC
subcss2.x φXS
subcss2.y φYS
Assertion subcss2 φXJYXHY

Proof

Step Hyp Ref Expression
1 subcss1.1 φJSubcatC
2 subcss1.2 φJFnS×S
3 subcss2.h H=HomC
4 subcss2.x φXS
5 subcss2.y φYS
6 eqid Hom𝑓C=Hom𝑓C
7 1 6 subcssc φJcatHom𝑓C
8 2 7 4 5 ssc2 φXJYXHom𝑓CY
9 eqid BaseC=BaseC
10 1 2 9 subcss1 φSBaseC
11 10 4 sseldd φXBaseC
12 10 5 sseldd φYBaseC
13 6 9 3 11 12 homfval φXHom𝑓CY=XHY
14 8 13 sseqtrd φXJYXHY