Metamath Proof Explorer


Theorem subcidcl

Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcidcl.j φJSubcatC
subcidcl.2 φJFnS×S
subcidcl.x φXS
subcidcl.1 1˙=IdC
Assertion subcidcl φ1˙XXJX

Proof

Step Hyp Ref Expression
1 subcidcl.j φJSubcatC
2 subcidcl.2 φJFnS×S
3 subcidcl.x φXS
4 subcidcl.1 1˙=IdC
5 fveq2 x=X1˙x=1˙X
6 id x=Xx=X
7 6 6 oveq12d x=XxJx=XJX
8 5 7 eleq12d x=X1˙xxJx1˙XXJX
9 eqid Hom𝑓C=Hom𝑓C
10 eqid compC=compC
11 subcrcl JSubcatCCCat
12 1 11 syl φCCat
13 9 4 10 12 2 issubc2 φJSubcatCJcatHom𝑓CxS1˙xxJxySzSfxJygyJzgxycompCzfxJz
14 1 13 mpbid φJcatHom𝑓CxS1˙xxJxySzSfxJygyJzgxycompCzfxJz
15 simpl 1˙xxJxySzSfxJygyJzgxycompCzfxJz1˙xxJx
16 15 ralimi xS1˙xxJxySzSfxJygyJzgxycompCzfxJzxS1˙xxJx
17 14 16 simpl2im φxS1˙xxJx
18 8 17 3 rspcdva φ1˙XXJX