| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subcidcl.j |
|
| 2 |
|
subcidcl.2 |
|
| 3 |
|
subcidcl.x |
|
| 4 |
|
subccocl.o |
|
| 5 |
|
subccocl.y |
|
| 6 |
|
subccocl.z |
|
| 7 |
|
subccocl.f |
|
| 8 |
|
subccocl.g |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
subcrcl |
|
| 12 |
1 11
|
syl |
|
| 13 |
9 10 4 12 2
|
issubc2 |
|
| 14 |
1 13
|
mpbid |
|
| 15 |
14
|
simprd |
|
| 16 |
5
|
adantr |
|
| 17 |
6
|
ad2antrr |
|
| 18 |
7
|
ad3antrrr |
|
| 19 |
|
simpllr |
|
| 20 |
|
simplr |
|
| 21 |
19 20
|
oveq12d |
|
| 22 |
18 21
|
eleqtrrd |
|
| 23 |
8
|
ad4antr |
|
| 24 |
|
simpllr |
|
| 25 |
|
simplr |
|
| 26 |
24 25
|
oveq12d |
|
| 27 |
23 26
|
eleqtrrd |
|
| 28 |
|
simp-5r |
|
| 29 |
|
simp-4r |
|
| 30 |
28 29
|
opeq12d |
|
| 31 |
|
simpllr |
|
| 32 |
30 31
|
oveq12d |
|
| 33 |
|
simpr |
|
| 34 |
|
simplr |
|
| 35 |
32 33 34
|
oveq123d |
|
| 36 |
28 31
|
oveq12d |
|
| 37 |
35 36
|
eleq12d |
|
| 38 |
27 37
|
rspcdv |
|
| 39 |
22 38
|
rspcimdv |
|
| 40 |
17 39
|
rspcimdv |
|
| 41 |
16 40
|
rspcimdv |
|
| 42 |
41
|
adantld |
|
| 43 |
3 42
|
rspcimdv |
|
| 44 |
15 43
|
mpd |
|