| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subccat.1 |
|
| 2 |
|
subccat.j |
|
| 3 |
|
subccatid.1 |
|
| 4 |
|
subccatid.2 |
|
| 5 |
|
eqid |
|
| 6 |
|
subcrcl |
|
| 7 |
2 6
|
syl |
|
| 8 |
2 3 5
|
subcss1 |
|
| 9 |
1 5 7 3 8
|
rescbas |
|
| 10 |
1 5 7 3 8
|
reschom |
|
| 11 |
|
eqid |
|
| 12 |
1 5 7 3 8 11
|
rescco |
|
| 13 |
1
|
ovexi |
|
| 14 |
13
|
a1i |
|
| 15 |
|
biid |
|
| 16 |
2
|
adantr |
|
| 17 |
3
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
16 17 18 4
|
subcidcl |
|
| 20 |
|
eqid |
|
| 21 |
7
|
adantr |
|
| 22 |
8
|
adantr |
|
| 23 |
|
simpr1l |
|
| 24 |
22 23
|
sseldd |
|
| 25 |
|
simpr1r |
|
| 26 |
22 25
|
sseldd |
|
| 27 |
2
|
adantr |
|
| 28 |
3
|
adantr |
|
| 29 |
27 28 20 23 25
|
subcss2 |
|
| 30 |
|
simpr31 |
|
| 31 |
29 30
|
sseldd |
|
| 32 |
5 20 4 21 24 11 26 31
|
catlid |
|
| 33 |
|
simpr2l |
|
| 34 |
22 33
|
sseldd |
|
| 35 |
27 28 20 25 33
|
subcss2 |
|
| 36 |
|
simpr32 |
|
| 37 |
35 36
|
sseldd |
|
| 38 |
5 20 4 21 26 11 34 37
|
catrid |
|
| 39 |
27 28 23 11 25 33 30 36
|
subccocl |
|
| 40 |
|
simpr2r |
|
| 41 |
22 40
|
sseldd |
|
| 42 |
27 28 20 33 40
|
subcss2 |
|
| 43 |
|
simpr33 |
|
| 44 |
42 43
|
sseldd |
|
| 45 |
5 20 11 21 24 26 34 31 37 41 44
|
catass |
|
| 46 |
9 10 12 14 15 19 32 38 39 45
|
iscatd2 |
|