Metamath Proof Explorer


Theorem srhmsubcALTVlem1

Description: Lemma 1 for srhmsubcALTV . (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s r S r Ring
srhmsubcALTV.c C = U S
Assertion srhmsubcALTVlem1 U V X C X Base RingCatALTV U

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s r S r Ring
2 srhmsubcALTV.c C = U S
3 1 2 srhmsubclem1 X C X U Ring
4 3 adantl U V X C X U Ring
5 eqid RingCatALTV U = RingCatALTV U
6 eqid Base RingCatALTV U = Base RingCatALTV U
7 id U V U V
8 5 6 7 ringcbasALTV U V Base RingCatALTV U = U Ring
9 8 adantr U V X C Base RingCatALTV U = U Ring
10 4 9 eleqtrrd U V X C X Base RingCatALTV U