Metamath Proof Explorer


Theorem srhmsubcALTVlem2

Description: Lemma 2 for srhmsubcALTV . (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = ( 𝑈𝑆 )
srhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion srhmsubcALTVlem2 ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 ( Hom ‘ ( RingCatALTV ‘ 𝑈 ) ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
2 srhmsubcALTV.c 𝐶 = ( 𝑈𝑆 )
3 srhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
4 3 a1i ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) )
5 oveq12 ( ( 𝑟 = 𝑋𝑠 = 𝑌 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑋 RingHom 𝑌 ) )
6 5 adantl ( ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑟 = 𝑋𝑠 = 𝑌 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑋 RingHom 𝑌 ) )
7 simpl ( ( 𝑋𝐶𝑌𝐶 ) → 𝑋𝐶 )
8 7 adantl ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑋𝐶 )
9 simpr ( ( 𝑋𝐶𝑌𝐶 ) → 𝑌𝐶 )
10 9 adantl ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑌𝐶 )
11 ovexd ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 RingHom 𝑌 ) ∈ V )
12 4 6 8 10 11 ovmpod ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )
13 eqid ( RingCatALTV ‘ 𝑈 ) = ( RingCatALTV ‘ 𝑈 )
14 eqid ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) = ( Base ‘ ( RingCatALTV ‘ 𝑈 ) )
15 simpl ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑈𝑉 )
16 eqid ( Hom ‘ ( RingCatALTV ‘ 𝑈 ) ) = ( Hom ‘ ( RingCatALTV ‘ 𝑈 ) )
17 1 2 srhmsubcALTVlem1 ( ( 𝑈𝑉𝑋𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) )
18 7 17 sylan2 ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑋 ∈ ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) )
19 1 2 srhmsubcALTVlem1 ( ( 𝑈𝑉𝑌𝐶 ) → 𝑌 ∈ ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) )
20 9 19 sylan2 ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑌 ∈ ( Base ‘ ( RingCatALTV ‘ 𝑈 ) ) )
21 13 14 15 16 18 20 ringchomALTV ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 ( Hom ‘ ( RingCatALTV ‘ 𝑈 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )
22 12 21 eqtr4d ( ( 𝑈𝑉 ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 ( Hom ‘ ( RingCatALTV ‘ 𝑈 ) ) 𝑌 ) )