Metamath Proof Explorer


Theorem rhmsubc

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u φ U V
rngcrescrhm.c C = RngCat U
rngcrescrhm.r φ R = Ring U
rngcrescrhm.h H = RingHom R × R
Assertion rhmsubc φ H Subcat RngCat U

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u φ U V
2 rngcrescrhm.c C = RngCat U
3 rngcrescrhm.r φ R = Ring U
4 rngcrescrhm.h H = RingHom R × R
5 eqidd φ Rng U = Rng U
6 1 3 5 rhmsscrnghm φ RingHom R × R cat RngHomo Rng U × Rng U
7 4 a1i φ H = RingHom R × R
8 2 a1i φ C = RngCat U
9 8 eqcomd φ RngCat U = C
10 9 fveq2d φ Hom 𝑓 RngCat U = Hom 𝑓 C
11 eqid Base C = Base C
12 2 11 1 rngchomfeqhom φ Hom 𝑓 C = Hom C
13 eqid Hom C = Hom C
14 2 11 1 13 rngchomfval φ Hom C = RngHomo Base C × Base C
15 2 11 1 rngcbas φ Base C = U Rng
16 incom U Rng = Rng U
17 15 16 eqtrdi φ Base C = Rng U
18 17 sqxpeqd φ Base C × Base C = Rng U × Rng U
19 18 reseq2d φ RngHomo Base C × Base C = RngHomo Rng U × Rng U
20 14 19 eqtrd φ Hom C = RngHomo Rng U × Rng U
21 10 12 20 3eqtrd φ Hom 𝑓 RngCat U = RngHomo Rng U × Rng U
22 6 7 21 3brtr4d φ H cat Hom 𝑓 RngCat U
23 1 2 3 4 rhmsubclem3 φ x R Id RngCat U x x H x
24 1 2 3 4 rhmsubclem4 φ x R y R z R f x H y g y H z g x y comp RngCat U z f x H z
25 24 ralrimivva φ x R y R z R f x H y g y H z g x y comp RngCat U z f x H z
26 25 ralrimivva φ x R y R z R f x H y g y H z g x y comp RngCat U z f x H z
27 23 26 jca φ x R Id RngCat U x x H x y R z R f x H y g y H z g x y comp RngCat U z f x H z
28 27 ralrimiva φ x R Id RngCat U x x H x y R z R f x H y g y H z g x y comp RngCat U z f x H z
29 eqid Hom 𝑓 RngCat U = Hom 𝑓 RngCat U
30 eqid Id RngCat U = Id RngCat U
31 eqid comp RngCat U = comp RngCat U
32 eqid RngCat U = RngCat U
33 32 rngccat U V RngCat U Cat
34 1 33 syl φ RngCat U Cat
35 1 2 3 4 rhmsubclem1 φ H Fn R × R
36 29 30 31 34 35 issubc2 φ H Subcat RngCat U H cat Hom 𝑓 RngCat U x R Id RngCat U x x H x y R z R f x H y g y H z g x y comp RngCat U z f x H z
37 22 28 36 mpbir2and φ H Subcat RngCat U