| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcrescrhm.u |
|
| 2 |
|
rngcrescrhm.c |
|
| 3 |
|
rngcrescrhm.r |
|
| 4 |
|
rngcrescrhm.h |
|
| 5 |
|
simpl |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simpl |
|
| 10 |
9
|
adantl |
|
| 11 |
1 2 3 4
|
rhmsubclem2 |
|
| 12 |
6 8 10 11
|
syl3anc |
|
| 13 |
12
|
eleq2d |
|
| 14 |
|
simpr |
|
| 15 |
14
|
adantl |
|
| 16 |
1 2 3 4
|
rhmsubclem2 |
|
| 17 |
6 10 15 16
|
syl3anc |
|
| 18 |
17
|
eleq2d |
|
| 19 |
13 18
|
anbi12d |
|
| 20 |
|
rhmco |
|
| 21 |
20
|
ancoms |
|
| 22 |
19 21
|
biimtrdi |
|
| 23 |
22
|
imp |
|
| 24 |
1
|
ad3antrrr |
|
| 25 |
2
|
eqcomi |
|
| 26 |
25
|
fveq2i |
|
| 27 |
|
inss2 |
|
| 28 |
3 27
|
eqsstrdi |
|
| 29 |
28
|
sselda |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
adantr |
|
| 32 |
28
|
sseld |
|
| 33 |
32
|
adantrd |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
imp |
|
| 36 |
35
|
adantr |
|
| 37 |
28
|
sseld |
|
| 38 |
37
|
adantld |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
imp |
|
| 41 |
40
|
adantr |
|
| 42 |
4
|
oveqi |
|
| 43 |
8 10
|
ovresd |
|
| 44 |
42 43
|
eqtrid |
|
| 45 |
44
|
eleq2d |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
46 47
|
rhmf |
|
| 49 |
45 48
|
biimtrdi |
|
| 50 |
49
|
com12 |
|
| 51 |
50
|
adantr |
|
| 52 |
51
|
impcom |
|
| 53 |
4
|
oveqi |
|
| 54 |
|
ovres |
|
| 55 |
54
|
adantl |
|
| 56 |
53 55
|
eqtrid |
|
| 57 |
56
|
eleq2d |
|
| 58 |
|
eqid |
|
| 59 |
47 58
|
rhmf |
|
| 60 |
57 59
|
biimtrdi |
|
| 61 |
60
|
com12 |
|
| 62 |
61
|
adantl |
|
| 63 |
62
|
impcom |
|
| 64 |
2 24 26 31 36 41 52 63
|
rngcco |
|
| 65 |
1 2 3 4
|
rhmsubclem2 |
|
| 66 |
6 8 15 65
|
syl3anc |
|
| 67 |
66
|
adantr |
|
| 68 |
23 64 67
|
3eltr4d |
|