Metamath Proof Explorer


Theorem rlimdmo1

Description: A convergent function is eventually bounded. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Assertion rlimdmo1
|- ( F e. dom ~~>r -> F e. O(1) )

Proof

Step Hyp Ref Expression
1 eldmg
 |-  ( F e. dom ~~>r -> ( F e. dom ~~>r <-> E. x F ~~>r x ) )
2 1 ibi
 |-  ( F e. dom ~~>r -> E. x F ~~>r x )
3 rlimo1
 |-  ( F ~~>r x -> F e. O(1) )
4 3 exlimiv
 |-  ( E. x F ~~>r x -> F e. O(1) )
5 2 4 syl
 |-  ( F e. dom ~~>r -> F e. O(1) )