Description: The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmnvc | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ringLMod ` R ) e. NrmVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmnlm | |- ( R e. NrmRing -> ( ringLMod ` R ) e. NrmMod ) |
|
| 2 | rlmlvec | |- ( R e. DivRing -> ( ringLMod ` R ) e. LVec ) |
|
| 3 | isnvc | |- ( ( ringLMod ` R ) e. NrmVec <-> ( ( ringLMod ` R ) e. NrmMod /\ ( ringLMod ` R ) e. LVec ) ) |
|
| 4 | 3 | biimpri | |- ( ( ( ringLMod ` R ) e. NrmMod /\ ( ringLMod ` R ) e. LVec ) -> ( ringLMod ` R ) e. NrmVec ) |
| 5 | 1 2 4 | syl2an | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ringLMod ` R ) e. NrmVec ) |