Description: The ring module over a normed division ring is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmnvc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ringLMod ‘ 𝑅 ) ∈ NrmVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmnlm | ⊢ ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod ) | |
| 2 | rlmlvec | ⊢ ( 𝑅 ∈ DivRing → ( ringLMod ‘ 𝑅 ) ∈ LVec ) | |
| 3 | isnvc | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ NrmVec ↔ ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod ∧ ( ringLMod ‘ 𝑅 ) ∈ LVec ) ) | |
| 4 | 3 | biimpri | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod ∧ ( ringLMod ‘ 𝑅 ) ∈ LVec ) → ( ringLMod ‘ 𝑅 ) ∈ NrmVec ) |
| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ringLMod ‘ 𝑅 ) ∈ NrmVec ) |