Metamath Proof Explorer


Theorem rmbaserp

Description: The base of exponentiation for the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmbaserp
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ )

Proof

Step Hyp Ref Expression
1 rmspecfund
 |-  ( A e. ( ZZ>= ` 2 ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) )
2 rmspecnonsq
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) )
3 pellfundrp
 |-  ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) e. RR+ )
4 2 3 syl
 |-  ( A e. ( ZZ>= ` 2 ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) e. RR+ )
5 1 4 eqeltrrd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ )