| Step |
Hyp |
Ref |
Expression |
| 1 |
|
moan |
|- ( E* x ( x e. A /\ ph ) -> E* x ( ps /\ ( x e. A /\ ph ) ) ) |
| 2 |
|
an12 |
|- ( ( ps /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ( ps /\ ph ) ) ) |
| 3 |
2
|
mobii |
|- ( E* x ( ps /\ ( x e. A /\ ph ) ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) ) |
| 4 |
1 3
|
sylib |
|- ( E* x ( x e. A /\ ph ) -> E* x ( x e. A /\ ( ps /\ ph ) ) ) |
| 5 |
|
df-rmo |
|- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
| 6 |
|
df-rmo |
|- ( E* x e. A ( ps /\ ph ) <-> E* x ( x e. A /\ ( ps /\ ph ) ) ) |
| 7 |
4 5 6
|
3imtr4i |
|- ( E* x e. A ph -> E* x e. A ( ps /\ ph ) ) |