Metamath Proof Explorer


Theorem rmobidvaOLD

Description: Obsolete version of rmobidv as of 23-Nov-2024. (Contributed by NM, 16-Jun-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rmobidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rmobidvaOLD
|- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rmobidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 nfv
 |-  F/ x ph
3 2 1 rmobida
 |-  ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )