Metamath Proof Explorer


Theorem rmorabex

Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017)

Ref Expression
Assertion rmorabex
|- ( E* x e. A ph -> { x e. A | ph } e. _V )

Proof

Step Hyp Ref Expression
1 moabex
 |-  ( E* x ( x e. A /\ ph ) -> { x | ( x e. A /\ ph ) } e. _V )
2 df-rmo
 |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) )
3 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
4 3 eleq1i
 |-  ( { x e. A | ph } e. _V <-> { x | ( x e. A /\ ph ) } e. _V )
5 1 2 4 3imtr4i
 |-  ( E* x e. A ph -> { x e. A | ph } e. _V )