Metamath Proof Explorer


Theorem moabex

Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996) Avoid axioms. (Revised by SN, 2-Feb-2026)

Ref Expression
Assertion moabex
|- ( E* x ph -> { x | ph } e. _V )

Proof

Step Hyp Ref Expression
1 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
2 df-sn
 |-  { y } = { x | x = y }
3 vsnex
 |-  { y } e. _V
4 2 3 eqeltrri
 |-  { x | x = y } e. _V
5 4 a1i
 |-  ( A. x ( ph -> x = y ) -> { x | x = y } e. _V )
6 ss2abim
 |-  ( A. x ( ph -> x = y ) -> { x | ph } C_ { x | x = y } )
7 5 6 ssexd
 |-  ( A. x ( ph -> x = y ) -> { x | ph } e. _V )
8 7 exlimiv
 |-  ( E. y A. x ( ph -> x = y ) -> { x | ph } e. _V )
9 1 8 sylbi
 |-  ( E* x ph -> { x | ph } e. _V )