Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996) Avoid axioms. (Revised by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moabex | |- ( E* x ph -> { x | ph } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
|
| 2 | df-sn | |- { y } = { x | x = y } |
|
| 3 | vsnex | |- { y } e. _V |
|
| 4 | 2 3 | eqeltrri | |- { x | x = y } e. _V |
| 5 | 4 | a1i | |- ( A. x ( ph -> x = y ) -> { x | x = y } e. _V ) |
| 6 | ss2abim | |- ( A. x ( ph -> x = y ) -> { x | ph } C_ { x | x = y } ) |
|
| 7 | 5 6 | ssexd | |- ( A. x ( ph -> x = y ) -> { x | ph } e. _V ) |
| 8 | 7 | exlimiv | |- ( E. y A. x ( ph -> x = y ) -> { x | ph } e. _V ) |
| 9 | 1 8 | sylbi | |- ( E* x ph -> { x | ph } e. _V ) |