Metamath Proof Explorer


Theorem moabex

Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996) Avoid axioms. (Revised by SN, 2-Feb-2026)

Ref Expression
Assertion moabex * x φ x | φ V

Proof

Step Hyp Ref Expression
1 df-mo * x φ y x φ x = y
2 df-sn y = x | x = y
3 vsnex y V
4 2 3 eqeltrri x | x = y V
5 4 a1i x φ x = y x | x = y V
6 ss2abim x φ x = y x | φ x | x = y
7 5 6 ssexd x φ x = y x | φ V
8 7 exlimiv y x φ x = y x | φ V
9 1 8 sylbi * x φ x | φ V