Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996) Avoid axioms. (Revised by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moabex | ⊢ ( ∃* 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 2 | df-sn | ⊢ { 𝑦 } = { 𝑥 ∣ 𝑥 = 𝑦 } | |
| 3 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 4 | 2 3 | eqeltrri | ⊢ { 𝑥 ∣ 𝑥 = 𝑦 } ∈ V |
| 5 | 4 | a1i | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝑥 = 𝑦 } ∈ V ) |
| 6 | ss2abim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝑥 = 𝑦 } ) | |
| 7 | 5 6 | ssexd | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ∈ V ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ∈ V ) |
| 9 | 1 8 | sylbi | ⊢ ( ∃* 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } ∈ V ) |