Metamath Proof Explorer


Theorem moabex

Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996) Avoid axioms. (Revised by SN, 2-Feb-2026)

Ref Expression
Assertion moabex ( ∃* 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
2 df-sn { 𝑦 } = { 𝑥𝑥 = 𝑦 }
3 vsnex { 𝑦 } ∈ V
4 2 3 eqeltrri { 𝑥𝑥 = 𝑦 } ∈ V
5 4 a1i ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝑥 = 𝑦 } ∈ V )
6 ss2abim ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝜑 } ⊆ { 𝑥𝑥 = 𝑦 } )
7 5 6 ssexd ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝜑 } ∈ V )
8 7 exlimiv ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝜑 } ∈ V )
9 1 8 sylbi ( ∃* 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )