| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spsbim |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 2 |
1
|
alrimiv |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 3 |
|
df-ss |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 4 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 5 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 6 |
4 5
|
imbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 8 |
3 7
|
bitr2i |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ) |
| 9 |
2 8
|
sylib |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ) |