Metamath Proof Explorer


Theorem ss2abim

Description: Class abstractions in a subclass relationship. Reverse direction of ss2ab which requires fewer axioms. (Contributed by SN, 2-Feb-2026)

Ref Expression
Assertion ss2abim ( ∀ 𝑥 ( 𝜑𝜓 ) → { 𝑥𝜑 } ⊆ { 𝑥𝜓 } )

Proof

Step Hyp Ref Expression
1 spsbim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
2 1 alrimiv ( ∀ 𝑥 ( 𝜑𝜓 ) → ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
3 df-ss ( { 𝑥𝜑 } ⊆ { 𝑥𝜓 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } → 𝑦 ∈ { 𝑥𝜓 } ) )
4 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
5 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
6 4 5 imbi12i ( ( 𝑦 ∈ { 𝑥𝜑 } → 𝑦 ∈ { 𝑥𝜓 } ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
7 6 albii ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } → 𝑦 ∈ { 𝑥𝜓 } ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
8 3 7 bitr2i ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ { 𝑥𝜑 } ⊆ { 𝑥𝜓 } )
9 2 8 sylib ( ∀ 𝑥 ( 𝜑𝜓 ) → { 𝑥𝜑 } ⊆ { 𝑥𝜓 } )