Metamath Proof Explorer


Theorem rmspecpos

Description: The discriminant used to define the X and Y sequences is a positive real. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmspecpos
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ )

Proof

Step Hyp Ref Expression
1 eluzelre
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. RR )
2 1 resqcld
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. RR )
3 1red
 |-  ( A e. ( ZZ>= ` 2 ) -> 1 e. RR )
4 2 3 resubcld
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR )
5 sq1
 |-  ( 1 ^ 2 ) = 1
6 eluz2b1
 |-  ( A e. ( ZZ>= ` 2 ) <-> ( A e. ZZ /\ 1 < A ) )
7 6 simprbi
 |-  ( A e. ( ZZ>= ` 2 ) -> 1 < A )
8 0le1
 |-  0 <_ 1
9 8 a1i
 |-  ( A e. ( ZZ>= ` 2 ) -> 0 <_ 1 )
10 eluzge2nn0
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN0 )
11 10 nn0ge0d
 |-  ( A e. ( ZZ>= ` 2 ) -> 0 <_ A )
12 3 1 9 11 lt2sqd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( 1 < A <-> ( 1 ^ 2 ) < ( A ^ 2 ) ) )
13 7 12 mpbid
 |-  ( A e. ( ZZ>= ` 2 ) -> ( 1 ^ 2 ) < ( A ^ 2 ) )
14 5 13 eqbrtrrid
 |-  ( A e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) )
15 3 2 posdifd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( 1 < ( A ^ 2 ) <-> 0 < ( ( A ^ 2 ) - 1 ) ) )
16 14 15 mpbid
 |-  ( A e. ( ZZ>= ` 2 ) -> 0 < ( ( A ^ 2 ) - 1 ) )
17 4 16 elrpd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ )