Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rng2idlsubgsubrng.r | |- ( ph -> R e. Rng ) | |
| rng2idlsubgsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) | ||
| rng2idlsubgsubrng.u | |- ( ph -> I e. ( SubGrp ` R ) ) | ||
| Assertion | rng2idlsubgnsg | |- ( ph -> I e. ( NrmSGrp ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rng2idlsubgsubrng.r | |- ( ph -> R e. Rng ) | |
| 2 | rng2idlsubgsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) | |
| 3 | rng2idlsubgsubrng.u | |- ( ph -> I e. ( SubGrp ` R ) ) | |
| 4 | 1 2 3 | rng2idlsubgsubrng | |- ( ph -> I e. ( SubRng ` R ) ) | 
| 5 | subrngringnsg | |- ( I e. ( SubRng ` R ) -> I e. ( NrmSGrp ` R ) ) | |
| 6 | 4 5 | syl | |- ( ph -> I e. ( NrmSGrp ` R ) ) |