Metamath Proof Explorer


Theorem rng2idlsubgnsg

Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rng2idlsubgsubrng.r
|- ( ph -> R e. Rng )
rng2idlsubgsubrng.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlsubgsubrng.u
|- ( ph -> I e. ( SubGrp ` R ) )
Assertion rng2idlsubgnsg
|- ( ph -> I e. ( NrmSGrp ` R ) )

Proof

Step Hyp Ref Expression
1 rng2idlsubgsubrng.r
 |-  ( ph -> R e. Rng )
2 rng2idlsubgsubrng.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlsubgsubrng.u
 |-  ( ph -> I e. ( SubGrp ` R ) )
4 1 2 3 rng2idlsubgsubrng
 |-  ( ph -> I e. ( SubRng ` R ) )
5 subrngringnsg
 |-  ( I e. ( SubRng ` R ) -> I e. ( NrmSGrp ` R ) )
6 4 5 syl
 |-  ( ph -> I e. ( NrmSGrp ` R ) )