Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rng2idlsubgsubrng.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| rng2idlsubgsubrng.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | ||
| rng2idlsubgsubrng.u | ⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) | ||
| Assertion | rng2idlsubgnsg | ⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rng2idlsubgsubrng.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
| 2 | rng2idlsubgsubrng.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
| 3 | rng2idlsubgsubrng.u | ⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 4 | 1 2 3 | rng2idlsubgsubrng | ⊢ ( 𝜑 → 𝐼 ∈ ( SubRng ‘ 𝑅 ) ) | 
| 5 | subrngringnsg | ⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |