| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlsubgsubrng.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlsubgsubrng.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlsubgsubrng.u | ⊢ ( 𝜑  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 4 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( oppr ‘ 𝑅 )  =  ( oppr ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  =  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) | 
						
							| 8 | 4 5 6 7 | 2idlelb | ⊢ ( 𝐼  ∈  ( 2Ideal ‘ 𝑅 )  ↔  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) | 
						
							| 9 | 8 | simplbi | ⊢ ( 𝐼  ∈  ( 2Ideal ‘ 𝑅 )  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑅  ↾s  𝐼 )  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 12 | 4 11 | rnglidlrng | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 13 | 1 10 3 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 14 | 1 2 13 | rng2idlsubrng | ⊢ ( 𝜑  →  𝐼  ∈  ( SubRng ‘ 𝑅 ) ) |