Metamath Proof Explorer


Theorem rng2idlsubrng

Description: A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025) (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rng2idlsubrng.r ( 𝜑𝑅 ∈ Rng )
rng2idlsubrng.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlsubrng.u ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
Assertion rng2idlsubrng ( 𝜑𝐼 ∈ ( SubRng ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 rng2idlsubrng.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlsubrng.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlsubrng.u ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
6 4 5 2idlss ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) )
7 2 6 syl ( 𝜑𝐼 ⊆ ( Base ‘ 𝑅 ) )
8 4 issubrng ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅s 𝐼 ) ∈ Rng ∧ 𝐼 ⊆ ( Base ‘ 𝑅 ) ) )
9 1 3 7 8 syl3anbrc ( 𝜑𝐼 ∈ ( SubRng ‘ 𝑅 ) )