Description: A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025) (Revised by AV, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlsubrng.r | |- ( ph -> R e. Rng ) |
|
rng2idlsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
rng2idlsubrng.u | |- ( ph -> ( R |`s I ) e. Rng ) |
||
Assertion | rng2idlsubrng | |- ( ph -> I e. ( SubRng ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlsubrng.r | |- ( ph -> R e. Rng ) |
|
2 | rng2idlsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
3 | rng2idlsubrng.u | |- ( ph -> ( R |`s I ) e. Rng ) |
|
4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
5 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
6 | 4 5 | 2idlss | |- ( I e. ( 2Ideal ` R ) -> I C_ ( Base ` R ) ) |
7 | 2 6 | syl | |- ( ph -> I C_ ( Base ` R ) ) |
8 | 4 | issubrng | |- ( I e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s I ) e. Rng /\ I C_ ( Base ` R ) ) ) |
9 | 1 3 7 8 | syl3anbrc | |- ( ph -> I e. ( SubRng ` R ) ) |