Metamath Proof Explorer


Theorem rng2idlsubrng

Description: A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025) (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rng2idlsubrng.r
|- ( ph -> R e. Rng )
rng2idlsubrng.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlsubrng.u
|- ( ph -> ( R |`s I ) e. Rng )
Assertion rng2idlsubrng
|- ( ph -> I e. ( SubRng ` R ) )

Proof

Step Hyp Ref Expression
1 rng2idlsubrng.r
 |-  ( ph -> R e. Rng )
2 rng2idlsubrng.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlsubrng.u
 |-  ( ph -> ( R |`s I ) e. Rng )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )
6 4 5 2idlss
 |-  ( I e. ( 2Ideal ` R ) -> I C_ ( Base ` R ) )
7 2 6 syl
 |-  ( ph -> I C_ ( Base ` R ) )
8 4 issubrng
 |-  ( I e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s I ) e. Rng /\ I C_ ( Base ` R ) ) )
9 1 3 7 8 syl3anbrc
 |-  ( ph -> I e. ( SubRng ` R ) )