Metamath Proof Explorer


Theorem 2idlss

Description: A two-sided ideal is a subset of the base set. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025) (Proof shortened by AV, 13-Mar-2025)

Ref Expression
Hypotheses 2idlss.b
|- B = ( Base ` W )
2idlss.i
|- I = ( 2Ideal ` W )
Assertion 2idlss
|- ( U e. I -> U C_ B )

Proof

Step Hyp Ref Expression
1 2idlss.b
 |-  B = ( Base ` W )
2 2idlss.i
 |-  I = ( 2Ideal ` W )
3 2 eleq2i
 |-  ( U e. I <-> U e. ( 2Ideal ` W ) )
4 3 biimpi
 |-  ( U e. I -> U e. ( 2Ideal ` W ) )
5 4 2idllidld
 |-  ( U e. I -> U e. ( LIdeal ` W ) )
6 eqid
 |-  ( LIdeal ` W ) = ( LIdeal ` W )
7 1 6 lidlss
 |-  ( U e. ( LIdeal ` W ) -> U C_ B )
8 5 7 syl
 |-  ( U e. I -> U C_ B )