Metamath Proof Explorer


Theorem 2idlbas

Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlbas.i
|- ( ph -> I e. ( 2Ideal ` R ) )
2idlbas.j
|- J = ( R |`s I )
2idlbas.b
|- B = ( Base ` J )
Assertion 2idlbas
|- ( ph -> B = I )

Proof

Step Hyp Ref Expression
1 2idlbas.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
2 2idlbas.j
 |-  J = ( R |`s I )
3 2idlbas.b
 |-  B = ( Base ` J )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )
6 4 5 2idlss
 |-  ( I e. ( 2Ideal ` R ) -> I C_ ( Base ` R ) )
7 2 4 ressbas2
 |-  ( I C_ ( Base ` R ) -> I = ( Base ` J ) )
8 1 6 7 3syl
 |-  ( ph -> I = ( Base ` J ) )
9 3 8 eqtr4id
 |-  ( ph -> B = I )