Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2idlbas.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
2idlbas.j | |- J = ( R |`s I ) |
||
2idlbas.b | |- B = ( Base ` J ) |
||
Assertion | 2idlbas | |- ( ph -> B = I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlbas.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
2 | 2idlbas.j | |- J = ( R |`s I ) |
|
3 | 2idlbas.b | |- B = ( Base ` J ) |
|
4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
5 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
6 | 4 5 | 2idlss | |- ( I e. ( 2Ideal ` R ) -> I C_ ( Base ` R ) ) |
7 | 2 4 | ressbas2 | |- ( I C_ ( Base ` R ) -> I = ( Base ` J ) ) |
8 | 1 6 7 | 3syl | |- ( ph -> I = ( Base ` J ) ) |
9 | 3 8 | eqtr4id | |- ( ph -> B = I ) |