| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlbas.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 2 |
|
2idlbas.j |
|- J = ( R |`s I ) |
| 3 |
|
2idlbas.b |
|- B = ( Base ` J ) |
| 4 |
1 2 3
|
2idlbas |
|- ( ph -> B = I ) |
| 5 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 6 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 7 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 8 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 9 |
5 6 7 8
|
2idlelb |
|- ( I e. ( 2Ideal ` R ) <-> ( I e. ( LIdeal ` R ) /\ I e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 10 |
9
|
simplbi |
|- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` R ) ) |
| 11 |
1 10
|
syl |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 12 |
4 11
|
eqeltrd |
|- ( ph -> B e. ( LIdeal ` R ) ) |
| 13 |
9
|
simprbi |
|- ( I e. ( 2Ideal ` R ) -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
| 14 |
1 13
|
syl |
|- ( ph -> I e. ( LIdeal ` ( oppR ` R ) ) ) |
| 15 |
4 14
|
eqeltrd |
|- ( ph -> B e. ( LIdeal ` ( oppR ` R ) ) ) |
| 16 |
12 15
|
jca |
|- ( ph -> ( B e. ( LIdeal ` R ) /\ B e. ( LIdeal ` ( oppR ` R ) ) ) ) |