| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlbas.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 2 |
|
2idlbas.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 3 |
|
2idlbas.b |
⊢ 𝐵 = ( Base ‘ 𝐽 ) |
| 4 |
1 2 3
|
2idlbas |
⊢ ( 𝜑 → 𝐵 = 𝐼 ) |
| 5 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 9 |
5 6 7 8
|
2idlelb |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 10 |
9
|
simplbi |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 12 |
4 11
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 13 |
9
|
simprbi |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 15 |
4 14
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 16 |
12 15
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |