Metamath Proof Explorer


Theorem 2idlbas

Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlbas.i φI2IdealR
2idlbas.j J=R𝑠I
2idlbas.b B=BaseJ
Assertion 2idlbas φB=I

Proof

Step Hyp Ref Expression
1 2idlbas.i φI2IdealR
2 2idlbas.j J=R𝑠I
3 2idlbas.b B=BaseJ
4 eqid BaseR=BaseR
5 eqid 2IdealR=2IdealR
6 4 5 2idlss I2IdealRIBaseR
7 2 4 ressbas2 IBaseRI=BaseJ
8 1 6 7 3syl φI=BaseJ
9 3 8 eqtr4id φB=I