Metamath Proof Explorer


Theorem 2idlss

Description: A two-sided ideal is a subset of the base set. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025) (Proof shortened by AV, 13-Mar-2025)

Ref Expression
Hypotheses 2idlss.b B=BaseW
2idlss.i I=2IdealW
Assertion 2idlss UIUB

Proof

Step Hyp Ref Expression
1 2idlss.b B=BaseW
2 2idlss.i I=2IdealW
3 2 eleq2i UIU2IdealW
4 3 biimpi UIU2IdealW
5 4 2idllidld UIULIdealW
6 eqid LIdealW=LIdealW
7 1 6 lidlss ULIdealWUB
8 5 7 syl UIUB