Metamath Proof Explorer


Theorem 2idllidld

Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypothesis 2idllidld.1 φI2IdealR
Assertion 2idllidld φILIdealR

Proof

Step Hyp Ref Expression
1 2idllidld.1 φI2IdealR
2 eqid LIdealR=LIdealR
3 eqid opprR=opprR
4 eqid LIdealopprR=LIdealopprR
5 eqid 2IdealR=2IdealR
6 2 3 4 5 2idlval 2IdealR=LIdealRLIdealopprR
7 1 6 eleqtrdi φILIdealRLIdealopprR
8 7 elin1d φILIdealR