Step |
Hyp |
Ref |
Expression |
1 |
|
issubrng.b |
|- B = ( Base ` R ) |
2 |
|
df-subrng |
|- SubRng = ( w e. Rng |-> { s e. ~P ( Base ` w ) | ( w |`s s ) e. Rng } ) |
3 |
2
|
mptrcl |
|- ( A e. ( SubRng ` R ) -> R e. Rng ) |
4 |
|
simp1 |
|- ( ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) -> R e. Rng ) |
5 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
6 |
5
|
pweqd |
|- ( r = R -> ~P ( Base ` r ) = ~P ( Base ` R ) ) |
7 |
|
oveq1 |
|- ( r = R -> ( r |`s s ) = ( R |`s s ) ) |
8 |
7
|
eleq1d |
|- ( r = R -> ( ( r |`s s ) e. Rng <-> ( R |`s s ) e. Rng ) ) |
9 |
6 8
|
rabeqbidv |
|- ( r = R -> { s e. ~P ( Base ` r ) | ( r |`s s ) e. Rng } = { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } ) |
10 |
|
df-subrng |
|- SubRng = ( r e. Rng |-> { s e. ~P ( Base ` r ) | ( r |`s s ) e. Rng } ) |
11 |
|
fvex |
|- ( Base ` R ) e. _V |
12 |
11
|
pwex |
|- ~P ( Base ` R ) e. _V |
13 |
12
|
rabex |
|- { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } e. _V |
14 |
9 10 13
|
fvmpt |
|- ( R e. Rng -> ( SubRng ` R ) = { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } ) |
15 |
14
|
eleq2d |
|- ( R e. Rng -> ( A e. ( SubRng ` R ) <-> A e. { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } ) ) |
16 |
|
oveq2 |
|- ( s = A -> ( R |`s s ) = ( R |`s A ) ) |
17 |
16
|
eleq1d |
|- ( s = A -> ( ( R |`s s ) e. Rng <-> ( R |`s A ) e. Rng ) ) |
18 |
17
|
elrab |
|- ( A e. { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } <-> ( A e. ~P ( Base ` R ) /\ ( R |`s A ) e. Rng ) ) |
19 |
1
|
eqcomi |
|- ( Base ` R ) = B |
20 |
19
|
sseq2i |
|- ( A C_ ( Base ` R ) <-> A C_ B ) |
21 |
20
|
anbi2i |
|- ( ( ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) <-> ( ( R |`s A ) e. Rng /\ A C_ B ) ) |
22 |
|
ibar |
|- ( R e. Rng -> ( ( ( R |`s A ) e. Rng /\ A C_ B ) <-> ( R e. Rng /\ ( ( R |`s A ) e. Rng /\ A C_ B ) ) ) ) |
23 |
21 22
|
bitrid |
|- ( R e. Rng -> ( ( ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) <-> ( R e. Rng /\ ( ( R |`s A ) e. Rng /\ A C_ B ) ) ) ) |
24 |
11
|
elpw2 |
|- ( A e. ~P ( Base ` R ) <-> A C_ ( Base ` R ) ) |
25 |
24
|
anbi2ci |
|- ( ( A e. ~P ( Base ` R ) /\ ( R |`s A ) e. Rng ) <-> ( ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) ) |
26 |
|
3anass |
|- ( ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) <-> ( R e. Rng /\ ( ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
27 |
23 25 26
|
3bitr4g |
|- ( R e. Rng -> ( ( A e. ~P ( Base ` R ) /\ ( R |`s A ) e. Rng ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
28 |
18 27
|
bitrid |
|- ( R e. Rng -> ( A e. { s e. ~P ( Base ` R ) | ( R |`s s ) e. Rng } <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
29 |
15 28
|
bitrd |
|- ( R e. Rng -> ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) ) |
30 |
3 4 29
|
pm5.21nii |
|- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) |