| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrngsubg |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 2 |
|
subrngrcl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
| 3 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Abel ) |
| 5 |
4
|
3anim1i |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 6 |
5
|
3expb |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 9 |
7 8
|
ablcom |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 10 |
6 9
|
syl |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 ↔ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) |
| 12 |
11
|
biimpd |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) |
| 13 |
12
|
ralrimivva |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) |
| 14 |
7 8
|
isnsg2 |
⊢ ( 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) ) |
| 15 |
1 13 14
|
sylanbrc |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) ) |