Description: Base set of a subring structure. (Contributed by AV, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrng0.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
Assertion | subrngbas | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrng0.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
2 | subrngsubg | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
3 | 1 | subgbas | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |