Description: Base set of a subring structure. (Contributed by AV, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrng0.1 | |- S = ( R |`s A ) |
|
Assertion | subrngbas | |- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrng0.1 | |- S = ( R |`s A ) |
|
2 | subrngsubg | |- ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) |
|
3 | 1 | subgbas | |- ( A e. ( SubGrp ` R ) -> A = ( Base ` S ) ) |
4 | 2 3 | syl | |- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) |