| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrngrcl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
| 2 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Grp ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
4
|
subrngss |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
| 7 |
6
|
subrngrng |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) |
| 8 |
|
rnggrp |
⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 10 |
4
|
issubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝑅 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Grp ) ) |
| 11 |
3 5 9 10
|
syl3anbrc |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |