Description: A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnghmf.b | |- B = ( Base ` R ) |
|
rnghmf.c | |- C = ( Base ` S ) |
||
Assertion | rnghmf | |- ( F e. ( R RngHomo S ) -> F : B --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmf.b | |- B = ( Base ` R ) |
|
2 | rnghmf.c | |- C = ( Base ` S ) |
|
3 | rnghmghm | |- ( F e. ( R RngHomo S ) -> F e. ( R GrpHom S ) ) |
|
4 | 1 2 | ghmf | |- ( F e. ( R GrpHom S ) -> F : B --> C ) |
5 | 3 4 | syl | |- ( F e. ( R RngHomo S ) -> F : B --> C ) |