Step |
Hyp |
Ref |
Expression |
1 |
|
rnghmf1o.b |
|- B = ( Base ` R ) |
2 |
|
rnghmf1o.c |
|- C = ( Base ` S ) |
3 |
|
rngimrcl |
|- ( F e. ( R RngIsom S ) -> ( R e. _V /\ S e. _V ) ) |
4 |
1 2
|
isrngim |
|- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIsom S ) <-> ( F e. ( R RngHomo S ) /\ F : B -1-1-onto-> C ) ) ) |
5 |
|
simpr |
|- ( ( F e. ( R RngHomo S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C ) |
6 |
4 5
|
syl6bi |
|- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIsom S ) -> F : B -1-1-onto-> C ) ) |
7 |
3 6
|
mpcom |
|- ( F e. ( R RngIsom S ) -> F : B -1-1-onto-> C ) |