Metamath Proof Explorer


Theorem rngimf1o

Description: An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmf1o.b
|- B = ( Base ` R )
rnghmf1o.c
|- C = ( Base ` S )
Assertion rngimf1o
|- ( F e. ( R RngIsom S ) -> F : B -1-1-onto-> C )

Proof

Step Hyp Ref Expression
1 rnghmf1o.b
 |-  B = ( Base ` R )
2 rnghmf1o.c
 |-  C = ( Base ` S )
3 rngimrcl
 |-  ( F e. ( R RngIsom S ) -> ( R e. _V /\ S e. _V ) )
4 1 2 isrngim
 |-  ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIsom S ) <-> ( F e. ( R RngHomo S ) /\ F : B -1-1-onto-> C ) ) )
5 simpr
 |-  ( ( F e. ( R RngHomo S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C )
6 4 5 syl6bi
 |-  ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIsom S ) -> F : B -1-1-onto-> C ) )
7 3 6 mpcom
 |-  ( F e. ( R RngIsom S ) -> F : B -1-1-onto-> C )