Metamath Proof Explorer


Theorem rngimf1o

Description: An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmf1o.b B=BaseR
rnghmf1o.c C=BaseS
Assertion rngimf1o FRRngIsoSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 rnghmf1o.b B=BaseR
2 rnghmf1o.c C=BaseS
3 rngimrcl FRRngIsoSRVSV
4 1 2 isrngim2 RVSVFRRngIsoSFRRngHomSF:B1-1 ontoC
5 simpr FRRngHomSF:B1-1 ontoCF:B1-1 ontoC
6 4 5 syl6bi RVSVFRRngIsoSF:B1-1 ontoC
7 3 6 mpcom FRRngIsoSF:B1-1 ontoC