Metamath Proof Explorer


Theorem isrngim2

Description: An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmf1o.b B=BaseR
rnghmf1o.c C=BaseS
Assertion isrngim2 RVSWFRRngIsoSFRRngHomSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 rnghmf1o.b B=BaseR
2 rnghmf1o.c C=BaseS
3 isrngim RVSWFRRngIsoSFRRngHomSF-1SRngHomR
4 1 2 rnghmf1o FRRngHomSF:B1-1 ontoCF-1SRngHomR
5 4 bicomd FRRngHomSF-1SRngHomRF:B1-1 ontoC
6 5 a1i RVSWFRRngHomSF-1SRngHomRF:B1-1 ontoC
7 6 pm5.32d RVSWFRRngHomSF-1SRngHomRFRRngHomSF:B1-1 ontoC
8 3 7 bitrd RVSWFRRngIsoSFRRngHomSF:B1-1 ontoC