Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | isrngim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rngim | |
|
2 | 1 | a1i | |
3 | oveq12 | |
|
4 | 3 | adantl | |
5 | oveq12 | |
|
6 | 5 | ancoms | |
7 | 6 | adantl | |
8 | 7 | eleq2d | |
9 | 4 8 | rabeqbidv | |
10 | elex | |
|
11 | 10 | adantr | |
12 | elex | |
|
13 | 12 | adantl | |
14 | ovex | |
|
15 | 14 | rabex | |
16 | 15 | a1i | |
17 | 2 9 11 13 16 | ovmpod | |
18 | 17 | eleq2d | |
19 | cnveq | |
|
20 | 19 | eleq1d | |
21 | 20 | elrab | |
22 | 18 21 | bitrdi | |