Metamath Proof Explorer


Theorem isrngim

Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020)

Ref Expression
Assertion isrngim RVSWFRRngIsoSFRRngHomSF-1SRngHomR

Proof

Step Hyp Ref Expression
1 df-rngim RngIso=rV,sVfrRngHoms|f-1sRngHomr
2 1 a1i RVSWRngIso=rV,sVfrRngHoms|f-1sRngHomr
3 oveq12 r=Rs=SrRngHoms=RRngHomS
4 3 adantl RVSWr=Rs=SrRngHoms=RRngHomS
5 oveq12 s=Sr=RsRngHomr=SRngHomR
6 5 ancoms r=Rs=SsRngHomr=SRngHomR
7 6 adantl RVSWr=Rs=SsRngHomr=SRngHomR
8 7 eleq2d RVSWr=Rs=Sf-1sRngHomrf-1SRngHomR
9 4 8 rabeqbidv RVSWr=Rs=SfrRngHoms|f-1sRngHomr=fRRngHomS|f-1SRngHomR
10 elex RVRV
11 10 adantr RVSWRV
12 elex SWSV
13 12 adantl RVSWSV
14 ovex RRngHomSV
15 14 rabex fRRngHomS|f-1SRngHomRV
16 15 a1i RVSWfRRngHomS|f-1SRngHomRV
17 2 9 11 13 16 ovmpod RVSWRRngIsoS=fRRngHomS|f-1SRngHomR
18 17 eleq2d RVSWFRRngIsoSFfRRngHomS|f-1SRngHomR
19 cnveq f=Ff-1=F-1
20 19 eleq1d f=Ff-1SRngHomRF-1SRngHomR
21 20 elrab FfRRngHomS|f-1SRngHomRFRRngHomSF-1SRngHomR
22 18 21 bitrdi RVSWFRRngIsoSFRRngHomSF-1SRngHomR