Metamath Proof Explorer


Theorem rnghmf1o

Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rnghmf1o.b B = Base R
rnghmf1o.c C = Base S
Assertion rnghmf1o F R RngHomo S F : B 1-1 onto C F -1 S RngHomo R

Proof

Step Hyp Ref Expression
1 rnghmf1o.b B = Base R
2 rnghmf1o.c C = Base S
3 rnghmrcl F R RngHomo S R Rng S Rng
4 3 ancomd F R RngHomo S S Rng R Rng
5 4 adantr F R RngHomo S F : B 1-1 onto C S Rng R Rng
6 simpr F R RngHomo S F : B 1-1 onto C F : B 1-1 onto C
7 rnghmghm F R RngHomo S F R GrpHom S
8 7 adantr F R RngHomo S F : B 1-1 onto C F R GrpHom S
9 1 2 ghmf1o F R GrpHom S F : B 1-1 onto C F -1 S GrpHom R
10 9 bicomd F R GrpHom S F -1 S GrpHom R F : B 1-1 onto C
11 8 10 syl F R RngHomo S F : B 1-1 onto C F -1 S GrpHom R F : B 1-1 onto C
12 6 11 mpbird F R RngHomo S F : B 1-1 onto C F -1 S GrpHom R
13 eqidd F R RngHomo S F = F
14 eqid mulGrp R = mulGrp R
15 14 1 mgpbas B = Base mulGrp R
16 15 a1i F R RngHomo S B = Base mulGrp R
17 eqid mulGrp S = mulGrp S
18 17 2 mgpbas C = Base mulGrp S
19 18 a1i F R RngHomo S C = Base mulGrp S
20 13 16 19 f1oeq123d F R RngHomo S F : B 1-1 onto C F : Base mulGrp R 1-1 onto Base mulGrp S
21 20 biimpa F R RngHomo S F : B 1-1 onto C F : Base mulGrp R 1-1 onto Base mulGrp S
22 14 17 rnghmmgmhm F R RngHomo S F mulGrp R MgmHom mulGrp S
23 22 adantr F R RngHomo S F : B 1-1 onto C F mulGrp R MgmHom mulGrp S
24 eqid Base mulGrp R = Base mulGrp R
25 eqid Base mulGrp S = Base mulGrp S
26 24 25 mgmhmf1o F mulGrp R MgmHom mulGrp S F : Base mulGrp R 1-1 onto Base mulGrp S F -1 mulGrp S MgmHom mulGrp R
27 26 bicomd F mulGrp R MgmHom mulGrp S F -1 mulGrp S MgmHom mulGrp R F : Base mulGrp R 1-1 onto Base mulGrp S
28 23 27 syl F R RngHomo S F : B 1-1 onto C F -1 mulGrp S MgmHom mulGrp R F : Base mulGrp R 1-1 onto Base mulGrp S
29 21 28 mpbird F R RngHomo S F : B 1-1 onto C F -1 mulGrp S MgmHom mulGrp R
30 12 29 jca F R RngHomo S F : B 1-1 onto C F -1 S GrpHom R F -1 mulGrp S MgmHom mulGrp R
31 17 14 isrnghmmul F -1 S RngHomo R S Rng R Rng F -1 S GrpHom R F -1 mulGrp S MgmHom mulGrp R
32 5 30 31 sylanbrc F R RngHomo S F : B 1-1 onto C F -1 S RngHomo R
33 1 2 rnghmf F R RngHomo S F : B C
34 33 adantr F R RngHomo S F -1 S RngHomo R F : B C
35 34 ffnd F R RngHomo S F -1 S RngHomo R F Fn B
36 2 1 rnghmf F -1 S RngHomo R F -1 : C B
37 36 adantl F R RngHomo S F -1 S RngHomo R F -1 : C B
38 37 ffnd F R RngHomo S F -1 S RngHomo R F -1 Fn C
39 dff1o4 F : B 1-1 onto C F Fn B F -1 Fn C
40 35 38 39 sylanbrc F R RngHomo S F -1 S RngHomo R F : B 1-1 onto C
41 32 40 impbida F R RngHomo S F : B 1-1 onto C F -1 S RngHomo R