Description: Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringgcl.1 | |- G = ( 1st ` R ) |
|
| ringgcl.2 | |- X = ran G |
||
| Assertion | rngoa4 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgcl.1 | |- G = ( 1st ` R ) |
|
| 2 | ringgcl.2 | |- X = ran G |
|
| 3 | 1 | rngoablo | |- ( R e. RingOps -> G e. AbelOp ) |
| 4 | 2 | ablo4 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) ) |
| 5 | 3 4 | syl3an1 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) ) |