Step |
Hyp |
Ref |
Expression |
1 |
|
rnghom0.1 |
|- G = ( 1st ` R ) |
2 |
|
rnghom0.2 |
|- Z = ( GId ` G ) |
3 |
|
rnghom0.3 |
|- J = ( 1st ` S ) |
4 |
|
rnghom0.4 |
|- W = ( GId ` J ) |
5 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
6 |
5
|
3ad2ant1 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) -> G e. GrpOp ) |
7 |
3
|
rngogrpo |
|- ( S e. RingOps -> J e. GrpOp ) |
8 |
7
|
3ad2ant2 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) -> J e. GrpOp ) |
9 |
1 3
|
rngogrphom |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) -> F e. ( G GrpOpHom J ) ) |
10 |
2 4
|
ghomidOLD |
|- ( ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) -> ( F ` Z ) = W ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) -> ( F ` Z ) = W ) |