Description: Obsolete as of 25-Jan-2020. Use ringen1zr or srgen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | on1el3.1 | |- G = ( 1st ` R ) |
|
| on1el3.2 | |- X = ran G |
||
| on1el3.3 | |- Z = ( GId ` G ) |
||
| Assertion | rngosn6 | |- ( R e. RingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on1el3.1 | |- G = ( 1st ` R ) |
|
| 2 | on1el3.2 | |- X = ran G |
|
| 3 | on1el3.3 | |- Z = ( GId ` G ) |
|
| 4 | 1 2 3 | rngo0cl | |- ( R e. RingOps -> Z e. X ) |
| 5 | 1 2 | rngosn4 | |- ( ( R e. RingOps /\ Z e. X ) -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |
| 6 | 4 5 | mpdan | |- ( R e. RingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |