Metamath Proof Explorer


Theorem rngosn6

Description: Obsolete as of 25-Jan-2020. Use ringen1zr or srgen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses on1el3.1 G=1stR
on1el3.2 X=ranG
on1el3.3 Z=GIdG
Assertion rngosn6 RRingOpsX1𝑜R=ZZZZZZ

Proof

Step Hyp Ref Expression
1 on1el3.1 G=1stR
2 on1el3.2 X=ranG
3 on1el3.3 Z=GIdG
4 1 2 3 rngo0cl RRingOpsZX
5 1 2 rngosn4 RRingOpsZXX1𝑜R=ZZZZZZ
6 4 5 mpdan RRingOpsX1𝑜R=ZZZZZZ