Metamath Proof Explorer


Theorem rngonegcl

Description: A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1 G=1stR
ringnegcl.2 X=ranG
ringnegcl.3 N=invG
Assertion rngonegcl RRingOpsAXNAX

Proof

Step Hyp Ref Expression
1 ringnegcl.1 G=1stR
2 ringnegcl.2 X=ranG
3 ringnegcl.3 N=invG
4 1 rngogrpo RRingOpsGGrpOp
5 2 3 grpoinvcl GGrpOpAXNAX
6 4 5 sylan RRingOpsAXNAX