Metamath Proof Explorer


Theorem srgen1zr

Description: The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010) (Revised by AV, 25-Jan-2020)

Ref Expression
Hypotheses srg1zr.b B=BaseR
srg1zr.p +˙=+R
srg1zr.t ˙=R
srgen1zr.p Z=0R
Assertion srgen1zr RSRing+˙FnB×B˙FnB×BB1𝑜+˙=ZZZ˙=ZZZ

Proof

Step Hyp Ref Expression
1 srg1zr.b B=BaseR
2 srg1zr.p +˙=+R
3 srg1zr.t ˙=R
4 srgen1zr.p Z=0R
5 1 4 srg0cl RSRingZB
6 5 3ad2ant1 RSRing+˙FnB×B˙FnB×BZB
7 en1eqsnbi ZBB1𝑜B=Z
8 7 adantl RSRing+˙FnB×B˙FnB×BZBB1𝑜B=Z
9 1 2 3 srg1zr RSRing+˙FnB×B˙FnB×BZBB=Z+˙=ZZZ˙=ZZZ
10 8 9 bitrd RSRing+˙FnB×B˙FnB×BZBB1𝑜+˙=ZZZ˙=ZZZ
11 6 10 mpdan RSRing+˙FnB×B˙FnB×BB1𝑜+˙=ZZZ˙=ZZZ