| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srg1zr.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
srg1zr.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
srg1zr.t |
⊢ ∗ = ( .r ‘ 𝑅 ) |
| 4 |
|
srgen1zr.p |
⊢ 𝑍 = ( 0g ‘ 𝑅 ) |
| 5 |
1 4
|
srg0cl |
⊢ ( 𝑅 ∈ SRing → 𝑍 ∈ 𝐵 ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 7 |
|
en1eqsnbi |
⊢ ( 𝑍 ∈ 𝐵 → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝑍 } ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝑍 } ) ) |
| 9 |
1 2 3
|
srg1zr |
⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| 10 |
8 9
|
bitrd |
⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 ≈ 1o ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| 11 |
6 10
|
mpdan |
⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 ≈ 1o ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |